Używane maszyny współrzędnościowe

13
Precyzyjna technologia pomiaru dla zapewnienia najwyższej jakości
Kategorie
Wyzeruj filtr Pokaż przedmioty
Pokaż na mapie Widok
Maszyna współrzędnościowa MIT TOYO EURO-C 122010
shape
DEA GLOBAL 091208 Coordinate measuring machine
shape
Maszyna współrzędnościowa HEXAGON GLOBAL E153314
shape
Maszyna współrzędnościowa MITUTOYO CRYSTA-APEX C 122010
shape
Maszyna współrzędnościowa ABERLINK AXIOM TOO 600 CNC
shape
Maszyna współrzędnościowa MITUTOYO CRYSTA APEX S 7106
shape
Maszyna współrzędnościowa MITUTOYO CRYSTA APEXC 544
shape
Maszyna współrzędnościowa ZEISS UMM 850
shape
WENZEL LH MINI 3D Współrzędnościowa maszyna pomiarowa
shape
Maszyna współrzędnościowa OPTACOM C-10
shape
MYCRONA Signum Coordinate measuring machine
shape
Maszyna współrzędnościowa MITUTOYO B 231
shape
WENZEL LH 65 Coordinate measuring machine
shape
Technika pomiarów współrzędnościowych oparta jest na komputerowym przetwarzaniu informacji pomiarowych w postaci współrzędnych punktów pomiarowych przez maszyny współrzędnościowe. Umożliwia to dużą dokładność wyznaczania przestrzennych wymiarów przedmiotów nawet o bardzo skomplikowanych kształtach. Zasada opiera się na wyznaczeniu wszystkich figur geometrycznych, z jakich złożony jest mierzony przedmiot.

Pierwszych precyzyjnych pomiarów współrzędnościowych dokonano w latach 50. ubiegłego wieku, kiedy pochodząca ze Szkocji firma Ferranti zaczęła produkować maszyny współrzędnościowe na potrzeby wojskowości. Pierwszy, stworzony w 1950 roku model wyposażony był w dwie osie pomiaru. Znacznie precyzyjniejsze modele o trzech osiach zaczęto produkować dziesięć lat później we Włoszech. Kolejnym etapem rozwoju było zastosowanie układów sterowania komputerowego, będące zasługą wynalazców ze Stanów Zjednoczonych.
  • Wyznaczanie wymiarów przedmiotów o skomplikowanych kształtach
  • Różne zakresy pomiarowe
  • Zróżnicowane rozwiązania konstrukcyjne
 Jakość   Szeroka Oferta   Personalizacja

Wszystkie maszyny współrzędnościowe zbudowane są z kilku układów. Układ nośny czyli ruchomy portal może przemieszczać się wzdłuż osi X iY, a głowica pomiarowa (inaczej sonda) zazwyczaj porusza się po osi Z. Ważnym elementem jest stół pomiarowy oraz układ pomiarowy Z czytnikami. Niezbędną częścią maszyny współrzędnościowej jest komputer z osprzętem i niezbędnym oprogramowaniem oraz szafa sterująca w której mieści się układ sterujący.

Maszyna współrzędnościowa w użyciu
Zróżnicowanie konstrukcyjne związane z różnym umiejscowieniem przestrzennym układów nośnych oraz kierunku wykonywanych przez nie ruchów, którym charakteryzują się maszyny współrzędnościowe pozwala wyróżnić kilka ich rodzajów. Konstrukcja maszyny wynika z dopuszczalnego maksymalnego obciążenia stołu oraz pożądanej dokładności i zakresów pomiaru. Maszyny mostowe znajdują zastosowanie w pomiarach przedmiotów o bardzo dużych gabarytach (między innymi pojazdów). Ich zakres pomiaru sięga nawet do 16 metrów. Maszyny portalowe podobnie jak mostowe mają dużą sztywność. Ruchomy jest jeden z elementów: portal lub stół. Maszyny wspornikowe mają stosunkowo niewielki zakres pomiarowy (do 800 milimetrów) i konstrukcję o małej sztywności. Maszyny wysięgnikowe cechują się zakresami pomiarowymi w granicach 800 - 2000 milimetrów. Mogą mieć ruchomą kolumnę i poziome ramię, stół może być ruchomy lub nieruchomy.
Maszyny kolumnowe znajdują zastosowanie w pomiarach korpusów oraz krzywek. Istnieją jeszcze maszyny hybrydowe, których konstrukcja opera się na robotach przemysłowych.

Do firm wytwarzających nowoczesne maszyny współrzędnościowe na potrzeby przemysłu należą tacy producenci, jak: ZEISS, BAYER, MESSWELK, ABERLINK, WENZEL, MITUTOYO, TRUMPF, THOME oraz NIKON METROLOGY